1.1.1.3、添加成分
在耐火制品生產中,為了促進其高溫變化和降低燒結溫度,有時加入少量的添加成分。按其目的和作用不同分為礦化劑、穩定劑和燒結劑等。通常分析耐火制品和原料的灼燒減量、各種氧化物含量和其它主要成分含量。將干燥的材料在規定溫度條件下加熱時質量減少百分率稱為灼減。
1.1.2、礦物組成
耐火制品是礦物組成體。制品的性質是其組成礦物和微觀結構的綜合反映。耐火制品的礦物組成取決于它的化學組成和工藝條件。化學組成相同的制品,由于工藝條件的不同,所形成礦物相的種類、數量、晶粒大小和結合情況的差異,使其性能可能有較大差異。例如SiO2含量相同的硅質制品,因SiO2在不同工藝條件下可能形成結構和性質不同的兩類礦物-磷石英和方石英,使制品的某些性質會有差異。即使制品的礦物組成一定,但隨礦相的晶粒大小、形狀和分布情況的不同,亦會對制品性質有顯著的影響(如熔融制品)。
耐火材料一般是多項組成體,其中的礦物相可分為兩類,即結晶相和玻璃相。
主晶相是指構成制品結構的主體且熔點較高的晶相。主晶相的性質、數量和其間結合狀態直接決定著制品的性質。
基質是指耐火材料中大晶體或骨料間隙中存在的物質。基質對制品的性質(如高溫特性和耐侵飾性)起著決定性的影響。在使用時制品往往首先從基質部分開始損壞,采用調整和改變制品的基質成分是改善制品性能的有效工藝措施。
絕大多數耐火制品(除少數特高耐火制品外),按其主晶相和基質的成分可以分為兩類:一類是含有晶相和玻璃相的多成分耐火制品,如粘土磚、硅磚等;另一類是僅含晶相的多成分制品,基質多為細微的結晶體,如鎂磚、鉻鎂磚等堿性耐火材料。這些制品在高溫燒成時,產生一定數量的液相,但是液相在冷卻時并不形成玻璃,而是形成結晶性基質,將主晶相膠結在一起,基質晶體的成分不同于主晶相。
耐火制品的顯微組織結構有兩種類型。一種是由硅酸鹽(硅酸鹽晶體礦物或玻璃體)結合物膠結晶體顆粒的結構類型,另一種是由晶體顆粒直接交錯結合成結晶網,例如高純鎂磚,這種直接結合結構類型的制品的高溫性能(高溫力學強度、抗渣性或熱震穩定性等)較前一種優越得多;因此具有廣闊得發展前景。
1.2、?耐火材料的組織結構
耐火材料是由固相(包括結晶相和玻璃相)和氣孔兩部分構成的非均質體,其中各種形狀和大小的氣孔與固相之間的宏觀組織結構。
1.2.1氣孔率、體積密度、真密度
氣孔率、體積密度、真密度等是評價耐火材料質量的重要指標。GB/T2997有十個定義:體積密度(帶有氣孔的干燥材料的質量與其總體積的比值,用g/cm3或kg/m3表示)、總體積(帶有氣孔的材料中固體物質、開口氣孔及閉口氣孔的體積總和)、真密度(帶有氣孔的干燥材料的質量與其真體積之比值,用g/cm3或kg/m3表示)、真體積(帶有氣孔的材料中固體物質的體積)、開口氣孔(浸漬時能被液體填充的氣孔)、閉口氣孔(浸漬時不能被液體填充的氣孔)、顯氣孔率(帶有氣孔的材料中所有開口氣孔的體積與總體積之比值,用%表示)、閉口氣孔率(帶有氣孔的材料中所有閉口氣孔的體積與總體積之比值,用%表示)、真氣孔率(顯氣孔率和閉口氣孔率的,用%表示)、致密定形耐火制品(真氣孔率小于45%的定形耐火制品)。
GB/T2997得測定原理:稱量試樣的質量,再用液體靜力稱量法測定其體積,計算顯氣孔率、體積密度,或根據試樣的真密度計算真氣孔率。
1.2.1.1氣孔率
耐火材料內的氣孔是由原料中氣孔和成型后顆粒間的氣孔所構成。大致可分為三類:1)閉口氣孔,它封閉在制品中不與外界相通;2)開口氣孔,一段封閉,另一段與外界相通,能為流體填充;3)貫通氣孔,貫通制品的兩面,能為流體通過;為簡便起見,通常將上述三類氣孔合并為兩類,即開口氣孔(包括貫通氣孔)和閉口氣孔。一般開口氣孔體積占總氣孔體積的絕對多數,閉口氣孔的體積則很少,閉口氣孔體積難于直接測定,因此,制品的氣孔率指標,常用開口氣孔率(亦稱顯氣孔率)表示。
真氣孔率(總氣孔率)A?=(V1+V2)Χ100%/V0,開口氣孔率(顯氣孔率)?B=?V1Χ100%/V0式中:V0、V1、V2分別代表總氣孔體積、開口氣孔體積和閉口氣孔體積(CM3).
1.2.1.2?吸水率
它是制品中全部開口氣孔吸滿水的質量與其干燥質量之比,以百分率表示,它實質上是反映制品中開口氣孔量的一個技術指標,由于其測定簡便,在生產中多直接用來鑒定原料煅燒質量。燒結良好的原料,其吸水率數值應較低。
1.2.1.3?體積密度
表示干燥制品的質量與其總體積之比,即制品單位體積(表觀體積)的質量,用g/cm3表示。
體積密度也是表征制品致密程度的主要指標,密度較高時,可減少外部侵入介質(液相或氣相)對耐火材料作用的總面積,從而提高其使用壽命,所以致密化是提高耐火材料質量的重要途徑,通常在生產中應控制原料煅燒后的體積密度,磚坯的體積密度和制品的燒結程度。
1.2.1.3?真密度
GB/T5071標準有兩個定義:真密度(帶有氣孔的干燥材料的質量與其真體積之比值,用g/cm3或kg/m3表示)、真體積(帶有氣孔的材料中固體物質的體積)。
GB/T5071標準的測定原理:把試樣破碎,磨碎,使之盡可能不存在有封閉氣孔,測量其干燥的質量和真體積,從而測得真密度。細料的體積用比重瓶和已知密度的液體測定,所用液體溫度必須控制或仔細地測量。
真密度是指不包括氣孔在內的單位體積耐火材料的質量,可用下式表示。
d真=G/[?V0-?(V1+V2)],式中?G-干燥試樣質量,g;?V0、V1、V2——分別為試樣的總體積,開口氣孔體積,閉口氣孔體積,cm3。
2、?耐火材料的熱學性質和導電性
2.1、熱膨脹
??????GB/T7320標準有兩個定義:線膨脹率(室溫至試驗溫度間試樣長度的相對變化率,用%表示)、平均線膨脹率(室溫至試驗溫度間溫度每升高1℃試樣長度的相對變化率,單位為10-6/℃)。
????
GB/T7320標準的測定原理:以規定的升溫速率將試樣加熱到指定的試驗溫度,測定隨溫度升高試樣長度的變化值,計算出試樣隨溫度升高的線膨脹率和指定溫度范圍的平均線膨脹系數,并繪制出膨脹曲線。
耐火材料的熱膨脹是指其體積或長度隨著溫度升高而增大的物理性質。
2.2、熱導率
?
YB/T4130把導熱系數定義為:指單位時間內在單位溫度梯度下沿熱流方向通過材料單位面積傳遞的熱量。如式(1)所示:
λ=q/(dT/dx)
式中:λ——導熱系數,單位為瓦每米開爾文(W/(m.K);
q——單位時間熱流密度,單位為瓦每平方米(W/m);
dT/dx——溫度梯度,單位為開爾文每米(K/m)。
YB/T4130測定導熱系數原理為:根據傅立葉一維平板穩定導熱過程的基本原理,測定穩態時單位時間一維溫度場中熱流縱向通過試樣熱面流至冷面后被流經中心量熱器的水流吸收的熱量。該熱量同試樣的導熱系數,冷熱面溫差,中心量熱器吸熱面面積成正比,同試樣的厚度成反比。
相關資訊
30
2024-08
27
2024-04
27
2024-04
01
2023-12
01
2023-12
01
2023-12
01
2023-12
01
2023-12
01
2023-12
01
2023-12